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Fatigue of continuous fibre composites 
H.-J. WEISS 
Zentralinstitut for Festkorperphysik und Werkstofforschung der Akademie der 
Wissenschaften der DDR, Dresden 

Fatigue curves for composites are derived from those of the components, with as little 
arbitrariness as possible. Even with this restriction, the expected fatigue behaviour of the 
composites turns out to be of a rather diverse nature, depending on modulus ratio, volume 
fraction, and residual stress. The results concern pulsating tension as well as fluctuating 
load at an arbitrary mean stress. By comparison with available experimental data, our 
results lead to a better understanding of composite behaviour. 

1. Introduction 
Fatigue strength is one of the most important 
mechanical properties of a material. Since its ex- 
perimental determination is rather time-consuming, 
detailed investigations as to the expected outcome 
of experiments or to the interpretation of the 
results may be justified. We will not go into details 
of the fatigue of metals or other materials but 
instead will try to answer the question of what 
kind of fatigue curve should be expected if the 
fatigue curves of the components of a composite 
material are known. Damage of composites is a 
rather complex phenomenon, including matrix 
cracks, interface debonding, fibre cracks, pull- 
out, local yield, fibres bridging the gap, etc. We 
will neither investigate those mechanisms nor 
go to the other extreme of constructing composite 
fatigue curves according to the rule of mixtures, 
which would be a clearly over-simplified approach. 

We are considering the behaviour of a composite 
material consisting of continuous aligned fibres 
embedded in a matrix. The components are 
assumed to be ideally elastic, i.e. redistribution of 
stress by creep is not considered. Differences be- 
tween Poisson's ratios of the components are neg- 
lected. The components are supposed to behave 
inside the composite in the same way as they 
would do. By comparison with experiment, the 
results obtained for the idealized system should 
enable us to draw conclusions concerning complex 
phenomena occurring in real systems. For simpli- 
city, the results are derived initially without 
considering residual stress. This is taken into 
account later. 

Symbols and subscripts are consistent with 
those of a former paper [1]. o, e and E are axial 
stress, strain, and Young's modulus respectively of 
the composite; M, F and K as first subscripts refer 
to the matrix, fibre, or any component respect- 
ively. Subscript f represents failure due to fatigue, 
while subscripts fM and fF represent composite 
damage due to failure of matrix or fibre, respect- 
ively, v is the volume fraction of fibres, and N 
the number of cycles. 

The fatigue curves of the components are written 
as OM~(N) and aFt(N), while those of the com- 
posite are written on (iV) and ai~ (N), referring to 
failure of one or two components, respectively. It 
will be necessary to work mainly in terms of the 
reverse functions, NMf(OM) , NF~(OF), Nn (o), and 
Nf2(o). The subscripts should be thought of as 
belonging to the curve rather than to the symbol 
they are attached to, lest formal objections arise 
against arbitrarily changing from a~ (N) to N~2 (a), 
for instance, which is necessary in the course of 
our reasoning. 

2. Fatigue under constant strain amplitude 
The axial load carried by the elastic components 
of a continuous fibre composite at strain e in the 
absence of residual stress is given by 

O M ~--- e M E  M, OF ~ e F E F ,  

O = VO F nk ( 1 - - V ) O  M : tsE 

E = VEF + (1 - -  v ) ~  M 

Failure of the fibres supposedly occurs at the num- 
ber of cycles, N, at which the fatigue curve OFt(N) 

e M ~ e F -~ c 

(I) 
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has dropped to the value of the actual fibre stress 
oF. This condition, with Equation 1, leads to 

OFf(N)  = OF = eEF  = o E F / E -  (2) 

a in this formula has the meaning of ofF, the stress 
at which the composite suffers damage due to 
fibre failure; 

OfF = aFf(N)E/EF. (3a) 

Similar reasoning gives a corresponding formula 
for the case of early matrix damage, the fibres 
being unaffected; 

otto = oMf(N)E/f: ~ .  (3b) 

Using these formulae, one need not know in ad- 
vance which of the two cqmponents would fail first. 
Such information can be obtained by comparison 
of off of  Equation 3a with arm of Equation 3b. 

O_M d ~ Or_ff ~ matrix / fails 
OfM % OfF ~ EM E~ fibre J first 

(3c) 
The composite stress decreases by the factor 
(1 --v)EM/E as soon as the fibres fail, since the 

strain amplitude is kept constant. In the (o,N)-  
plane of the fatigue curves, the sample would then 
cease moving parallel to the abscissa as N increases 
and would "jump" to the decreased ordinate. Ob- 
taining information from such plots would not be 
easy, and so for convenience we keep each sample 
moving at its ordinate even after failure of one 
component. Thus Equations 3a and b may be re- 
garded as true, regardless of the sequence by which 
the components fail. 

Since no special assumptions are made as to the 
shape of the fatigue curves of the components, our 
results apply to any monotonic component fatigue 
curve. For simplicity we use simple component 
fatigue curves that are composed of two straight 
sections in the logarithmic representation, as is 
often observed experimentally, with reasonable 
accuracy, if low-cycle fatigue is ignored (Fig. 1). 

As may be seen from Fig. 1, the character of 
composite failure changes with increasing stress. 
Below 1.6 (arbitrary units) fatigue failure does not 
occur at all. Between 1.6 and 2.1, the matrix 
fails, while the reinforcement does not, and be 
tween 2.1 and 3.9 the reinforcement fails first, the 
failure of the matrix being more or less delayed. 
Above 3.9 the sequence is reversed. 

It will be useful to reason in terms of of 1 
and of 2 ; 

of 1 (iV) = min 
or~(N) 

(4a) 
ofF(N) 

ofM(N) 
of2(N) = max (4b) 

ofF(N). 
on(N)  is the stress at which composite damage 
occurs by failure of one component at N cycles, 
and of~(N) is the stress which causes complete 
failure of both components at N cycles (Figs. 2 

and 3). 
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Figure 1 arFf and OMf are arbitrarily chosen fatigue curves 
of the components at pulsating tension. OfF and arM are 
the derived fatigue curves of  the composites with v - 0.3 
and EF/E  M = 3. The dashed line shows fibre and matrix 
failure at pulsating tension, with strain amplitude kept 
cons! ant. 

3. Fatigue under constant stress amplitude 
Instead of the strain amplitude, the stress ampli- 
tude is often kept constant during the fatigue test. 
The situation is identical to that of Section 2 as 
long as the deformation is purely elastic. Thus 
damage due to failure of one component, which 
occurs at off, is properly described by Equation 
4a. The number of cycles to failure of the remain- 
ing component requires more detailed consider- 
ation. 

For several reasons it becomes easier to work 
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Figure 2 OFf and aMf as in Fig. 1. The family of curves 
are the derived fatigue curves off of the composite with 
EF/E M = 3, showing failure of one component at pul- 
sating tension with strain amplitude kept constant. 
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Figure 3 off  and OMf as in Fig. 2. The family of curves 
are the derived fatigue curves af2 of the composite with 
EF/E M = 3, showing failure of two components at pul- 
sating tension, with strain amplitude kept constant. 

with the reverse functions, such as  NFf(O'F) , i.e. 
the number of  cycles to failure as a function of  the 
applied load, the latter being treated as an indepen- 
dent variable. The subscripts on the stress variables 
are to distinguish them from the composite stress, 
which goes without a subscript. Making use of 

eV = eM, we may express oF and aM by a; 

OF = eeriE,  o M = OEM/E. (5) 

Then the number of  cycles to failure of one com- 

ponent is given by 

{ NMf(OEM/E) matrix } 
Nf~ (a) = rain -+ fails first 

[ NFf(oEv/E) fibre 
(6) 

As soon as one component  has failed, the re- 
maining one has to carry the whole load. The 
problem of  calculating its endurance cannot be 
solved by considering the conventional fatigue 

curves only, for they do not  contain information 
concerning the number of  cycles to failure in such 
a test where the load amplitude is not kept con- 
stant. Thus we have to invent component  fatigue 
functions of  the type NKf(NI,  OK1, On). This re- 
presents the number of  cycles to failure of  a ma- 
terial K (standing for M or F)  under the load OK 
after having been loaded with the smaller load OK1 
up to N1 cycles. Using these functions we may 
write the number of  cycles to failure of  both  com- 
ponents as, 

Nvf(Nfl OI:;'F/E , O/V) if  the matrix fails first 

Nf2(o) = [NMf(Nfl ,  OEM/E, o/(1 - -v ) )  if the fibre fails first 
(7) 

where the formal parameter Nl  of  NKf(N1, OK1, OK) has been identified with Nft of  Equation 6, OK1 
with OF or o M of Equation 5, and o K with the increased stress on the remaining component .  

1390 



Fortunately it is not necessary to determine 
these functions experimentally, because narrow 
bounds expressed in terms of  ordinary fatigue 
functions can be found for them. We use these 
auxiliary fatigue functions of  more than one para- 
meter in intermediates stages of  working only, and 
represent the results in terms of  the ordinary func- 
tions. In order to derive the bounds, some inherent 
properties of  the functions are considered which 
are independent of  the material. Several relations 
follow from the definition of  the functions given 
above; 

NKf(0, OK1, OK) = NKf(OK) 

NKf(Na, 0, OK) = NKf(OK) + Na (8) 

NK~(N1, oK, aid = NKf(oK). 

N~ cannot exceed NKf by definition, hence 

N1 <NKf(N1,  OKI, 0"K). (9a) 

On the assumption that the material behaves 
"reasonably", i.e. every increase in load at any 
cycle drives the material slightly further towards 
final failure, the following inequality may be set 
up; 

NK~(N1, C~K, OK) < NKf(N1, OK1, OK) 

<2VKf(N1 , 0, OK), (9b) 

which means that the total number of  cycles to 
failure is larger the smaller the load during the first 
Na cycles out of  the total number. Any reduction 
in load will increase NKf, hence 

NKdN~, OK1, ~K) <NKf(N~, oKI, oKI) (9c) 

Making use of  Equation 8 and by a little rearrange- 
ment, Inequality 9 is reduced to 

NKf(OK) <NKf(N1,  OK1, OK)<NKf(OK1 ) 
and 

N1 <NKf(N~, oi~, 0K)<N~ +NKf(OK1) 
(10) 

These relations provide bounds for N a  (o), which 
are much narrower than experimental scatter in 
almost all cases of  practical interest. If applied to 
Equation 7, they lead to the results below: 

if the matrix fails first then 

NFf(O/V) ~ Nf2(o) ~ NFf(OEF/F ) and 

Nfl (0) < Nf2 (0) < Nfl (0) + NFf(O/V ) 

if the fibre fails first then 

NMf(O/(1 -- V)) ~<Nf2(a) <~NMf(aEM/E ) and 

Nfl (0) <Nf2 (o) < g f l  (o) + gMf(O/(l -- 7))) 
(11) 

0 ~< N~z (a) - Nfl (o) ~< 

NFf(O/v if the matrix fails first 

NM~(O[(1 -- v)) if the fibre fails first. 
(12) 

Which of  the bounds of  N a ( a )  will be relevant 
depends on the parameters of  the special system 
in question as well as on o. 

Equation 11 allows us to write down bounds 
for ( N f 2 - - N f l ) ,  which are a useful means for 
assessing results because they are rather narrow in 
many cases, as in the model composite material 
that Figs. 1 to 3 are based on (see Inequality 12). 
In Fig. 2, where N n  is shown, Nf2 and Nfl  would 
practically coincide at small v up to v =  0.3. 
Visible differences would arise at about v = 0.4 
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Figure 4 OFf and aMf as in Fig. 1. of 1 and crf2 are the 
derived fatigue curves of the composite with EF/E M = 3 
and v = 0.5, showing failure of one or two components, 
respectively. The stress amplitude at pulsating tension is 
kept constant. The shaded region indicates the uncertainty 
of of 2 inherent in our result. 
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and above. (The statements about the shape of the 
curves at different values of v apply to the special 
case that is chosen here for illustration. Different 
component curves o m and off could alter the 
situation, as may be seen in connection with the 
discussion of experimental data in Section 4. Fig. 
3 applies to the case of constant strain amplitude 
only and therefore is not applicable to the situ- 
ation dealt with in this section). 

The situation described above is shown in Fig. 
.4 for v = 0.5. The shaded region represents the 
uncertainty in N~z (o), or of 2 (iV), arising from the 
approximate character of our formulae. If neces- 
sary, the uncertainty could be reduced by more 
involved equations. We feel, however, that there 
is no need for greater subtlety in the theoretical 
approach, since some uncertainty of experimental 
fatigue curves as well as inevitable imperfections 
inherent in our theory due to neglect of more in- 
volved synergetic effects have to be anticipated. 
This does not apply to residual stress, the effect 
of which will be taken into account in Section 6. 

4. Discussion of experimental data 
Experimental results on fatigue of composite 
materials are not abundant, and most of the exist- 
ing composite fatigue curves have been measured 
without measuring those of the components at the 
same time. Thus it is not possible, at present, to 
derive definitely from experimental data to what 
extent composites really behave in the simple 
manner upon which our model is based. 

Varshavski and Tamayo [2] have investigated 
a steel wire/aluminium alloy composite. With the 
asymptotic fatigue data of the components, steel 
366Nmm -2 and A1 alloy 126Nmm -2, with 
Young's moduli of 205 000 Nmm -1 and 72 000 N 
mm -2 , respectively, our Equation 4a* in connec- 
tion with Relations 3 leads to the result that the 
matrix will fail finally if the composite stress ex- 
ceeds of 1 = 183 Nmm -2. This coincides remark- 
ably well with the experimental value of 177 N 
mm -2 reported in [2]. Since after matrix failure, 
the fibres covering only 25% of the cross-section 
would be stressed at twice the value of their fatigue 
strength, they will break immediately afterwards. 
Thus we come to the conclusion that on = eel, 
without, in this case, having to worry about 
formulae in the N(o)-representation, such as In- 
equality 11 which is somewhat tedious if only the 

*Which also holds under  constant  stress amplitude.  
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asymptotic behaviour is of interest. 
Our results seem to indicate that that composite 

material from Harvey Aluminium behaves as pre- 
dicted by our theory based on the least arbitrary 
assumptions, as far as fatigue is concerned. Thus 
there is no need to explain fatigue damage of the 
material by debonding of interfaces, and the con- 
clusion in [2] that fatigue properties might be 
improved by improving the fibre-matrix bond is 
not convincing. 

The tensile strength data of the components 
and the composite of [2] are incompatible. Per- 
haps the composite tensile strength of 1200N 
mm -2 is erroneous; one would expect less than 
half as much. The suspicion aroused by this figure 
is inevitably transferred to others connected with 
it, such as the endurance ratio. Another paper on 
fatigue by Varshavski [3] has been reviewed 
in [ l l .  

Experimental data obtained by Friedrich and 
Busalov [4] seem to fit well into our scheme, 
though some restrictions have to be considered, as 
will be discussed later. Fig. 5 shows fatigue curves 
of a composite, the components of which differ 
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Figure 5 OFf is the  rotary bending fatigue curve of Mo- 
maraging steel wires as in [4] (teflon channel  method) .  
OMf is the  fatigue curve o f  the  A1 alloy matr ix used in 
[4] ,  while aft and of~ are the derived fatigue curves of  
the  A1 alloy/steel wire composite ,  wi th  v = 0.25. Dots 
represent pulsating tension fatigue data by [4].  



extremely in their strength. As a result, the curves 
al l(N) and of2(N) are placed far apart. It is 
clearly seen in our graphical representation that 
the experimental data most probably belong to 
of=, while their large distance from the curve all 
indicates that the matrix may have been damaged 
at an early stage of the test. This would mean that 
the experimental data of Fig. 5 may represent not 
the strength of a compact composite material but 
that of a bunch of more or less loosely connected 
wires. The same applies to Fig. 6. 

The good correspondence between their experi- 
mental results and our theory has to be looked at 
with suspicion. This doubt arises from the suspic- 
iously good performance of the Mo-maraging steel 
wires, OFf(N). The 0.15mm diameter wires had 
been tested with a rotary-bending method des- 
cribed in [5]. In this test the wires rotate within a 
curved channel inside a piece of teflon. Putting 
aside the question of how to relate the rotary- 
bending fatigue strength to the pulsating tension 
fatigue strength, the problem remains that the 
curved channel method might give much higher 
endurances than the ordinary rotary-bending 
method. The curvature of the wire is kept constant' 
by the channel and any reduction of the wire 
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Figure d As in Fig. 5, but with v = 0.15. Dots and crosses 
represent two sets of  pulsating tension fatigue data by 
[41. 

cross-section by growing fatigue cracks reduces the 
bending moment at that site. The crack tip reaches 
the lower-stressed material inside the wire, where 
it may stop. With the ordinary rotary-bending 
fatigue test the bending moment is kept nearly 
constant, which leads to stress increase as soon as 
cracks begin to grow, causing the latter to acceler- 
ate. Thus the ordinary rotary-bending fatigue 
strength of this steel wire may be markedly lower 
than the value reported in [4]. For comparison 
with pulsating tension fatigue data of  the compo- 
site, the pulsating tension fatigue strength of the 
wire should be approximately calculated from the 
disputed value using some empirical relation be- 
tween them, like Goodman's law [6]. Thus it 
seems that after two necessary corrections, which 
roughly compensate each other, the true steel wire 
fatigue curve at pulsating tension may indeed 
come close to that curve reported by [4]. This 
may explain the good correspondence between 
theory and experiment in Figs. 5 and 6. In addition 
to these comments on [4], it has been found with 
the aid of our theory that one of their sets of 
experimental results has to be rejected. Despite 
this it has unfortunately found its way into a 
paper on composites [7]. 

Further experimental data as well as theoretical 
approaches will be discussed in connection with 
the results of the following sections. 

5. Fatigue under the condition of arbitrary 
mean stress 

In the preceding sections fatigue has been investi- 
gated only in the case of tensile stress changing 
between zero and the stress amplitude o or OK, 

which means that the mean stress is half as much. 
Often it is desirable, however, to obtain inform- 
ation on composite behaviour under the more gen- 
eral stress condition of a non-zero lower stress. 
Then fatigue is represented by a relation between 
N, mean stress, and alternating stress. The follow- 
:ing additional symbols are used; superscript m re- 
presents the mean stress, superscript a represents 
the alternating stress, and subscript u represents 
ultimate stress. 

The component fatigue functions may be written 
in the form NKf(O ~ ,  a~),  denoting the number of 
cycles to failure of the material which is cyclically 
stressed with a~: superposed on the mean stress 
oF.  The stress condition discussed in the preceding 
sections, for comparison, is characterized by the 
restriction aK - 2o~: = 2or~. The factor 2 enters, 
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Figure 7 Diagram illustrating the meaning of several terms 
as well as Goodman's Law. 

since o F is regarded as reference zero for the 
alternating stress. The relation between NKf(O~, 
o~) and our pulsating stress functions of the pre- 
ceding sections, NKf(OK), follows from their 
definition: 

NKf(OK) = NKf(OK/2, OK/2) (13) 

(Since the differently defined functions NKf can 
be distinguished by their number of variables, no 
other means of specification has been chosen.) It 
would be convenient to express NKf(O~,  a~)  by 
NKf(aK) in the entire range of the variables O~K 
and o~. The clue is provided by empirical laws 
such as the (modified) Goodman law, which holds 
with sufficient accuracy for many materials [6]. 

Goodman's law may be stated in the following 
way: If NKf is kept constant, NKf(a~, o~) pro- 
duces straight lines in the (o~K, a~)-plane which 
intersect the o~-axis at OKu (Fig. 7). That means 
that any pair of variables (a~,  a~) belonging to 
that line is equivalent with respect to the number 
of cycles to failure. IfNKf has been determined at 
a special loading regime (oF* a "*a , K J, then the same 
number NKf has to be expected for any (oF,  
o~) which satisfies the linear equation 

oF 
- (14) 

OKu OKu OF 

This relation is evident from Fig. 7. (The subscript 
K is to remind the reader of the fact that in this 
section we have not been concerned with the com- 

posite so far, but with the components.) In part- 
icular, with the aid of Goodman's law, it is possible 
to substitute any fluctuating stress regime by an 
equivalent regime of pulsating tension, o~ = o F = 
OK/2. By doing so, we obtain from Equation 14, 

2OKu O~* 
OK = -- O'*i~- + a"*~: " (15 )  

OKu 

(The asterisks may be omitted if not needed to 
distinguish between variables.) Hence, we may 
write 

{ 2OKu O~ t (16) 
NKf(0~, a~) = NKf t 0Ku + a~ - -o  F ] 

which indicates how information on fatigue under 
the more general condition of fluctuating load 
may be derived from a pulsating tension fatigue 
curve. 

In the absence of yield, the component stresses 
are related to the composite stress by 

(I F = OmEK/EI; o~ = OaEK/EI . (17) 

Now the question arises as to which of the com- 
ponents will fail first, initiating damage of the 
composite. It will be that of the lower number 
NKf at a given composite stress, 

[ NMf( , oh)  
Nfl(o m, o a) = rain (18) 

(NFf(o , . 

Taking into account Equations 16 and 17, we ob- 
tain Nfl(O m, ca), expressed by the pulsating 
tension functions of the components, as given by 
Equation 22 at the end of this section. 

For the purpose of calculating Nf2, which is the 
number of cycles to failure of the remaining com- 
ponent, information on the fatigue of the com- 
ponents would be required in the form of functions 
of five variables, NKf(Nfl , oF1 , O~l , OH, O~). 
Again the many-parameter fatigue functions serve 
only as an auxiliary means for deriving boundaries 
or approximate solutions. The final failure of the 
composite is determined by 

N f2 = 
N M a t Ff(gfl  , OFI , OFI , 

[ NMf(Nfl , O~ l ,  0-~II 

oF, @) if the matrix fails first (19) 

, O~M, oh)  if the fibre fails first 
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Goodman's  law reduces the five-parameter func- 
tions to three-parameter functions, the arithmetic 
of  which was worked out in the preceding section. 

N K f ( X f l ,  o ~ 1 ,  o ~ 1 ,  o H ,  o~:) (20)  

( 2OKuOKI 2OKuO~: ) 
= NKf Nf l ,  m ' - - - - - -  " 

O'Ku q- O~1 - -  OK1 0"Ku q- O~ - -  O 

With the component  stresses replaced by composite 
stresses, 

O ~  ~- oa'mEK/]3"I (21 )  

O~ 'm = oa'm/v ,  O~ m = oa 'm  / ( l  - -  V). 

Nf2 reads as Equation 23. Making use of  In- 
equality 10, we obtain the Inequality 24. Note 
that Relations 22 and 24, despite their formidable 
appearance, serve as explicit expressions ready for 
straightforward computation of the desired num- 
bers Nrl and Nf2. Part of  the information may be 
picked out to provide a preliminary survey of the 
result, as in Inequality 12. 

The results mentioned in this section are given 
below, with the parameters $1, $2, $3 and $4 
representing more complex functions of  the other 
variables. 

20Mu OaEM 20Mu O a 

$1 ~ OMuE + (oa om)EM, $3 =- (l__V)OMu + oa__om, 

2OFu OaEF 2OFu O a 
$2 -= , $4 = . 

OFuE q_ (O a _ _  o r n ) E F  VOFu q_ ~a _ _  0 m 

NMr(SI) matrix fails first 
Nf t  (o  m , o a) = min -+ 

tNvr(S2) fibre fails first 
(22) 

NFf(Nfl , $ 2 ,  $4)  if the matrix fails first 

Nf2(am' ~ ~-- (NMf(NI1, S1, $3) if the fibre fails first 
(23) 

(This is not a final result) 

If the matrix fails first then N F r ( S 4 )  ~-Nf2 (o m , o a) ~< NF~(S2). 

and Nfl (0 m , 0 a) K Nf2 (0 m , 0 a) ~< Nn (0 m , 0 a) + NFf ($4). 

If the fibre fails first then NMdS3) ~< N~  (0 m , o ~) ~< NMr(S~ ) 

and N n  (0  m , 0 a) ~ Nf2 (0 m , 0 a) ~ Nf l  (0  m , 0 a) q- NMr(S3 ) . 

(24) 

6. The effect of residual stress on fatigue 
The existence of  residual stress must always be 
anticipated in composite materials. It may enter 
during the process of  production as a result of  
differential thermal contradiction or in connection 
with cold-working [1]. Since the residual forces 
on the components necessarily cancel due to the 
equilibrium of  forces, only one parameter is needed 
to characterize the distribution of axial residual 
stress in the composite material consisting of two 
components.  It is called o0, which is defined by 

VOFo ~" --  (1 - -  V) OM0 : O0- (25)  

Experimental evidence [1] as well as theoretical 
estimates lead to the conclusion that neglecting 
stress components other than axial, as has been 
done in our approach, provides a good approxim- 
ation. For this reason, we consider axial residual 
stress only. 

The stress acting on the components is simply 
residual stress plus stress due to external load, 

O F = OEF/E I + OFO (9" M = O F M / E  I q~ OM0 
(26) 

Thus residual stress shifts the mean stresses oH 
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and O~M, leaving the amplitudes of  alternating 
stress, a} and a ~ ,  unchanged. 

a~ = omEF/EI + ao/V a~ = OaEF/EI 

O~ = OmEM/EI -- ao/(1 -- v) a ~  = aaEM/EI 
(27) 

Using these expressions instead of Equations 17, we 
obtain Equation 30, instead of  Equation 22. 

Writing down a formula for Nf2 in the presence 
of  residual stress turns out to be not quite as easy 
as for N ~ .  In order to keep to the most simple 
approach, we have not taken into account poss- 
ible changes of  residual stress due to micro-yield 
up to Nfl cycles. At Nf l ,  however, something will 
happen to the residual stress. It could change in a 
variety of  ways. Let us consider the most simple 
case again by pretending that the component  
which has failed at N f l  c a n  stand neither tension 
nor compression any longer. As a consequence, 
above Nn  residual stress will be gone (an altern- 
ative situation is mentioned at the end of this 
section). Thus it may happen that after failure of  
one component,  the stress on the remaining one 
is decreased, unlike all possible situations in the 
absence of  residual stress. With aZ~ >OK in 
NK~(N1, OK1, OK), Inequality 9 has to be modified. 
Instead of  Inequality 10, we obtain the relations; 

if  0rK1 < a K then Inequality 10 holds; 

i f  OKI > O K then 

NKdo~) < NKf(N1, ~K1, aK) < NKf(aK) 

and N1 < NKf(N1, OK1, OK). (28) 

Once again, the stress variables OK1 and OK are 
understood to be auxiliary quantities constructed 
by means of Goodman's  law in order to replace 
pairs of  variables OmKK1, a~l  and a ~ ,  o~,  as indi- 
cated in Equation 21. Thus aK1 and OK are always 
positive. 

By modifying Equations 21 for residual stress, 

OJ~F1 = OmEF/EI + O0/V 

al~l = ornEM/EI -- Oo/(1 -- v) 
(29) 

O~l = OaEF/EI O~vla = OaEM/EI 

O~ a'a = 0"m'a/v O ~  ' a  = a m ' a / ( 1 - - V ) .  

Nf2 may be written as Inequality 31. Inequalities 
30 and 31 reproduce the formulae for the more 
special situations of  zero residual stress or pul- 
sating tension, i.e. o a = a TM . 

$2 - 

20MuOaEM 
aMuE + (o a -- am)Era + ooE/(1 -- v) ' Sa - 

2 OFu OaEF 

aFu E + (O a -- Om)EF -- OoE/V 
$4 - 

2aMu aa 

( l  - -  7)) OMu -1- a a - -  a m 

2aFu  aa 

VOF u -J- 0 a - -  U m 

( NMf(S1 ) 
Nfl (o TM , a a) = rain 

t NFf(S2 ) 

matrix fails first 

fibre fails first. 

If  the matrix fails first: 

(30) 

if Oo < v(1 - V ) O F u E M / E  then 

NFf(S4)  < Nf~ (0 "m , 0 a) ~ NFf(S2 ) a n d  

Nfl (o "m, o a) < Nf2 (a  m , o a) < Nfl  (o T M  , O a) + NFf(S4 ) 

if ao > v(1 - -  V)aFuEM/E then 

NFf(S2 ) <- Nf2 ( a  TM , O a) ~ NFf(S4 ) and 

Nn (o TM , o") ~< N=  (a = , oa); 
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if the fibre fails first: 
if Oo > - -  v(1 - V)OMuEF/E then 

XMf(S3) <Nf2(o rn, o a) ~NMf(S1)  and 

Nfl (o m , o "a) < Nf2 (o m , o a) ~<N~1 (o m , o a) + NMf(S3); 

if Oo < -- v(1 -- v) OM~EF/E then 

NMf(S1) <<.Nfz(o m, o a) ~<NMf(S3) and 

N n  ( 0"m , oa )  < Nf2 (0 "m , oa )  - (31) 

After having found the result by a more formal 
way of  reasoning, we should briefly discuss what 
happens in reality. Let us consider a composite 
system, the damage of  which is initiated by matrix 
failure. If  the fibres were given some tensile pre- 
stress, the matrix would fail later than in the case 
of  zero pre-stress, which means that Nfl would in- 
crease. This could not go on, for increasing fibre 
stress would imply earlier fibre failure. Obviously 
there must be an opt imum residual stress that 
causes the two components to suffer damage at 
the same number of  cycles, no strength resources 
being wasted. This will occur if the two alternative 
numbers in Equation 30 coincide. 

Going back to possible changes of  residual 
stress at N = Ni l ,  a different situation should be 
mentioned briefly. It is evidently possible that the 
damaged component  may still be able to sustain 
compressional load, therefore the residual stress 
need not vanish at N n .  No additional theory is 
needed for deriving the corresponding formulae. 

7. Deriving more general results 
Using the formulae derived so far for the com- 
putation of  numerical results for special systems, 

one will run into difficulties as soon as one comes 
across a material whose fatigue curve has not been 
measured at pulsating tension, but at alternating or 
fluctuating stress. All that has to be done in this 
case is to replace the pulsating tension functions to 
be met  in our formulae by equivalent fluctuating 
stress functions, provided there is some reason to 
believe that the components in question obey 
Goodman's  law (since alternating stress is a special 
case of  fluctuating stress, the former need not be 

dealt with separately). The equivalence Of NKf(OK) 
and NKf(o~*,  o~*) is met if ok* is chosen so as to 
obey Relation 15; 

2oKu - OK/ 

(32) 

By means of this formula, our results may be trans- 
formed into a shape which would make it possible 
to use component  fatigue curves measured at any 
or~K *. Transforming Relations 30 and 31 in this 
way, we obtain our most general formulae for 
Nfl and Nf2, given by Relations 33 and 34. 

S 1 ~ OaEM 

S 2 ~ ' oaI2,'F 

OMu - -  O ~ *  

OMuE - -  OmEM + OOE/(1 - -  v)  ' 

OF u - -  O~ a * 

O-Fu E - -  OmEF - -  OoE/V ' 

$3 oa , OMu - -  0 ~  * 
(1 - V)OMu - -  a m 

$4 ~- o a O F u - -  0"~a* 
V U F  u - -  (7  r n  - 

Nfl  (o  rn,  o a) = rain 
{ NMdO~*, S1 ) 

N / m *  vftoF ,Sz)  

matrix fails first 

fibre fails first. 
(33) 

A formula for Nr is obtained by substituting 
i n  Relation 31 

N M f ( S I )  ~ N M f ( O  ~ * ,  S 1), 

M F f  (S2 )  49. N F f ( O ~  a *, $2 ), 

NMdS3) -" N M f ( O # * ,  $ 3 ) ,  

Nvf(S4 ) ~ NF, doF *, & ), 
(34) 
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with S1, $2, $3, 84 as defined in this section. Our 
formalism applies to any monotonically decreasing 
component fatigue function. Additional restrictions 
are not required. 

Often fatigue functions are held to be approxi- 
mated sufficiently well by a downward straight 
line in the o.Kf(lnN) plot, which around N =  107 
suddenly turns into a horizontal straight line. 
Though this is not always so [6], this type of 
curve has been chosen for convenience in our plots 
representing fatigue of the components. It should 
be mentioned, however, that the assumption of 
piecewise linear fatigue curves in logarithmic 
representation is not consistent with Goodman's 
law, which is evident from Equation 32: If 
N (~m * o.m * Kfl.UK , O.K(OKu - -  K )/(2O'Ku - -  (/K)) is linear 
by experiment in o.K (o'Ku - -  0"H *) / (20"g~ - -  OK ), it 
cannot be linear in OK, and vice versa. Fortunately, 
this inconsistency is not serious as long as O.K is 
much lower than 2o.Ku, which is guaranteed with 
the exception of low-cycle fatigue, the latter being 
omitted here. 

It is possible to adapt our formulae for user's 
special needs, thereby simplifying them. For ex- 
ample, only the so-called fatigue limit may be of 
interest in some cases, instead of the whole curve, 
or pulsating tension instead of fluctuating stress. 
Nowadays widespread use of small computers, into 
which our most comprehensive formulae may be 
fed without much difficulty, removes the need for 
adapting the formulae to special cases. These re- 
marks are not meant to discourage attempts at 
improving the underlying model by modifying its 
assumptions. 

The case of constant strain amplitude, treated 
briefly in Section 2 at pulsating tension only, may 
be considered at more general loading conditions. 
Equations 22, 30 and 33 are valid in this case, too, 
but Nf2 is different. It is still simple as long as 
residual stress is not considered, otherwise the 
result will have a structure similar to that of Re- 
lation 31. 

8. Comparison with experiment and 
discussion of other work 

Among reports on the performance of composite 
materials under fatigue conditions, there is little 
evidence of residual stress having a great effect. 
This may be partly due to the fact mentioned 
above that composites have seldom been tested 
along with their components, and if done so, 

usually no special attention has been paid to 
residual stress. 

As an instructive example of an application of 
our theory, we shall discuss experimental results of 
a steel wire/A1 alloy composite [8] different from 
those mentioned in Section 4. The 18 Ni maraging 
steel has been tested by the conventional rotary- 
bending fatigue method, which is roughly equiva- 
lent to an alternating stress test. Thus NFf(o.~*, 
@),  with o.F* =: 0, can be taken as given, which 
allows us to calculate the composite fatigue curves 
from Relations 33 and 34. The composite had 
been tested with pulsating tension, and so we are 
concerned here with o TM = o. a =  a/2. The matrix 
curve is known from [9] at mean stress 0.~* = 24 
N mm -2 , so that Nn is given by the smaller of the 
two numbers 

Xf, (0.) = Nfl (o/2, 0./2) = 

min 1 Mfl' M , 2 E i ( o . ~ i ~ - ~ ) a  eEs 

t~  - 

With the component parameters E M = 7 0 0 0 0  
Nmm -2, E F = 208000Nmm -2, OMu = 350N 
mm -2, o'Fu = 2800Nmm -2, the component fa- 
tigue curves as shown in Fig. 8, v = 0.18, and in 
the absence of residual stress, the first of the two 
alternative numbers is the smaller one throughout 
the whole range of o. Thus we may state that 
N f l  (0.) = NMf (24, 3260./(95 -- 0.)), which indi- 
cates that the matrix fails first (all stresses in N 
mm-2). We have only to consider the first alter- 
native in Relation 34. It starts with a condition, 
which is met in our case, so that all that remains 
are two restrictions for the number Nf2, 

NFi \(0'-2v:OF~__Fu 0r) < N f 2 ( o ) <  

O.EF aFu  ) and  
Nn (o) 0, 2Er(OF u _ ao/v) -- aEF 

Nfl(~ ( 0 ' 2 v :  eFu o) 
\ F u - -  

One finds out that Nrf(0, 2800o/(1000 - -  a)) is a 
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very small contribution compared with Nfl (0") at 
any o, so that Nf2 practically coincides with Nfl.  
In order to demonstrate how residual stress may 
affect fatigue, the resulting curve for % = 100 N 
mm -2 is shown beside that for ~o = 0 in Fig. 8. 
Once again, the limits for Nf2 are very narrow so 
that their width is smaller than that of the lines in 
our figures, furthermore, Nf2 coincides with Nfl 
in this case, too. 

It should be noted that the distinct angles seen 
in our curves are an aid to better understanding 
the method of constructing the curves. Any fine 
features of the curves, which would be swamped 
in experimental scatter anyway, are not to be con- 
sidered as a primary result, but as a mere by- 
product of the theory. It is not known whether 
the samples of Fig. 8 did really change their 
residual stress around N ~ l0 s , as is suggested by 
the graphical representation. 

Another approach to the fatigue strength of 
composites, which is based on a hypothesis by 
Tavernelli and Coffin [10], has been used by Baker 
e t  al. in a series of papers (see, for instance, [11] ). 
The essence of the approach is to calculate the 

t800 
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/2O0 

1000 

800 

~o 600 

4 0 0  - -50 ' �9 

200 ~ e" 
matrix ~ . ~  " ' / ,  

0 
702 ,os ,06 ,0 7 N ,be 

Figure 8 Fibre: rotational bending fatigue curve of 18Ni- 
maraging steel wire. Matrix: fluctuating stress fatigue 
curve of  A1MgSi at the mean stress of  cry* = 24 N mm 2. 
Derived pulsating tension curves of the composites at 
three different levels of residual stress are shown, dots 
representing experimental data. 

plastic strain which the matrix is subjected to at 
every cycle. This strain is held to be inversely 
proportional to the square root of NMf. Thus the 
approach entails the calculation of matrix fatigue 
behaviour. If the component fatigue curves are 
known, however, one should not dispense with 
this information, but use it for the construction of 
the composite fatigue curves, which is done in our 
approach. The authors [11 ] discuss various mech- 
anisms causing fatigue failure of the composite, 
including interfacial failure of several types as well 
as shear stress concentrations at fibre ends. Though 
phenomena of this kind may be essential in the 
line of fatigue, they are considered to be beyond 
the scope of a first quantitative approach. Thus 
they are given no special attention in this paper. 
There is no shear at the interfaces of continuous 
fibre composites with tensile load, except near 
the ends or at imperfections. 

A rather peculiar failure mode has been reported 
in a monograph by Ivanova e t  al. [12], where 
broken samples are shown with the fibres pulled 
out unbroken at full length. This phenomenon of 
complete debonding must have been brought 
about by interface shear stress. According to the 
above statement, shear stress at the fibre end or at 
a matrix fatigue crack could have been the initial 
cause of debonding. In the latter case, failure is 
described by our of 1 (or Nfl), but there is no o~2. 
Thus it depends on whether the interface crack 
had run from within the sample towards its end 
or conversely, whether our theory applies to this 
case. 

A formula corresponding to our Equation 3b 
.is given by [12]. This formula has been modified 
by Tamayo [13] in order to take into account 
residual stress. He simply replaced oMf by 
(aMf + OMo) in Equation 3b, thereby clearly 
over-estimating the effect of residual stress. 
Tamayo treats the phenomenon mathematically 
as if residual stress would change the upper matrix 
stress only, leaving the lower matrix stress at zero 
in the pulsating tension test. If  the composite is 
tested at pulsating tension, i.e. with zero lower 
stress, the components, of course, are subjected 
to fluctuating stress as soon as residual stress 
comes into play. This has been taken into account 
in our approach. 

As a means of graphical representation of the 
efficiency of fibres in improving fatigue properties 
of the composite, the fatigue strength at a certain 
number of cycles may be plotted versus volume 
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Figure 9 Pulsating tension fatigue strength of Cu/W com- 
posites versus volume fraction, derived from component 
data by means of Relation 31. Dots represent experi- 
mental data as in [14]. 

fract ion o f  fibres. In another  monograph  [14] ,  

Ivanova e t  al. plot ted  the pulsating tension strength 

o f  Cu/W composi tes  at N = 107. With the com- 

ponen t  propert ies  Era = 1 0 0 0 0 0 N m m  -z ,  E r - =  

350 0 0 0 N m m  -z , OMu = 3 0 0 N m m  -2 , oFu = 3000 

N m m  -2 , aMf(107) = 80 N m m  -2 , OFf(107) = 800 

N m m  -2,  the lat ter  value being assumed, our 

Relat ion 31 provides a curve which is shown 

along wi th  the exper imenta l  data in Fig. 9. The 

downward  slope o f  the first section o f  the curve is 

due to thermal  stress induced by  cooling o f  the 

sample after ho t  pressing. Thermal  stress has been  

held to be l imi ted to about  50 N m m  -2 , since larger 

stress would  relax soon in the recrystall ized Cu 

matr ix.  

The few examples  o f  fairly good coincidence o f  

exper iment  and theory  may  serve as evidence indi- 

cating that  fatigue o f  some kinds of  composi tes  is 

really governed by the simple mechanism which 

our  mode l  is based on. Very probably  there are 

o ther  kinds o f  composi tes  that  behave under  cyclic 

load in a more  involved manner .  In such cases our 

approach may  still serve as a means for separating 

synergetic effects  f rom those o f  the simplest 

approximat ion .  
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